

超高層大気長期変動の全球地上ネットワーク観測・研究 Inter-university Upper atmosphere Global Observation NETwork

Metadata DB for Upper Atmosphere

地磁気データ解析講習 in データ解析講習会 2012/Feb/24

担当: 阿部(九大SERC)

- 1. IUGONETで取り扱う地磁気・地磁気活動度データ
- 2. UDASによるIUGONET機関地磁気データプロット

<u>Purpose</u>

- 実際のイベント解析を通してUDASの使い方に慣れる
- ・地磁気のラインプロットや、簡単なデータ解析が
 できるようになる
- 他のデータとの統合的な解析に抵抗なく進めるようになる

<u>IUGONETで取り扱っている地磁気・地磁気活動度データ</u>

▶ 下はIUGONET参加機関の所有する観測機器と範囲を示した図。 地磁気による超高層分野の研究には長い歴史がある。IUGONET においても複数の参加機関が地磁気観測をおこなっており、地上 全域をカバーしている。

IUGONETで取り扱っている地磁気・地磁気活動度データ

<u>IUGONETで取り扱っている地磁気・地磁気活動度データ</u>

- ▶ 現在UDASに組み込まれているIUGONET参加機関の地磁気デー タとload procedureは以下のとおり(制限のあるものもあり。詳細 は各load procedureやウェブサイトを参考)
- http://www.iugonet.org/software/loadprocedures.html

観測データ	提供機関	ロードプロシージャ名
AE, Dst, ASY/SYM指数、観測所 地磁気データWDC形式1時間 値・1分値	京大WDC	iug_load_gmag_wdc
昭和基地、アイスランド地磁気	極地研	erg_load_gmag_nipr (iug_load_gmag_nipr)
210°地磁気観測網	名大、九大	erg_load_mag_mm210 (iug_load_gmag_mm210)
MAGDAS地磁気	九大	iug_load_mag_serc

台湾で現地協力者+センサーハットと

サイパン島のホテルで優雅にたたずむ

<u>UDAS/こよるIUGONET機関地磁気データプロット</u>

▶UDAS使用のおおまかな流れ ➤UDASを初期化する ▶解析する時間幅を入力する ➢ load procedureでデータを読む ▶tplot変数を確認する ≻そのままプロットする ▶データや時間幅を処理してプロットする

	<pre>PIDL REMOTE_DATA_DIR = 'http://themis.stp.isas.jaxa.jp/data/themis/' PROGRESS = 1 USER_AGENT = 'FILE_RETRIEVE: IDL7.1.1 Win32/x86_64 (abeshu)' FILE_MODE = 438 DIR_MODE = 511 PRESERVE_MTIME = 1 PROGOBJ = <nullobject> MIN_AGE_LIMIT = 30 NO_SERVER = 0 NO_SERVER = 0 NO_UPDATE = 0 NO_UPDATE = 0 IGNORE_FILESIZE = 0 IGNORE_FILESIZE = 0 USE_WGET = 0 NOWALT = 0 VERBOSE = 2 % Compiled module: TIME_DOUBLE. % Compiled module: TIME_STRUCT. % Compiled module: TIME_STRUCT. % Compiled module: TIRACE. IME_INIT(192): THEMIS countdown:1533 Days, 17 Hours, 07 Minutes, 18 Seconds since launch THEMIS></nullobject></pre>	
<	▲ >□マンドライン X THEMIS> ³	

- UDAS使用前にパッケージを ダウンロードし、パスを通して おく。
- IDLを立ち上げた後、

IDL>**thm_init**

- を入力しUDASの初期化完了
- プロンプトが "THEMIS>"に変わっていることを確認

<u>解析する時間幅を入力する</u>

解析時間幅は、以下の書式で入力

THEMIS>timespan,'yyyy-mm-dd/hh:mm:ss'[,n,/<option>]

例1)2012年1月23日から1日分を指定

THEMIS **timespan**, **2012-01-23**

←(,/1,/dayを続けても可)

例2)2011年1月22日から10日間を指定 THEMIS>timespan,'2012-01-22',10,/day

以下、例2の時間幅で講習を進めていく

 データの読み込みは、各機関提供のload procedure を使う(詳細は各load procedureの中や、crib sheetを 読むこと)

- 以上の4操作だけで
 - 極地研の昭和観測点
 - MAGDASの芦別観測点
 - 210MMのコトタバン観測点
 - 京大WDCのDst指数(リアルタイム値)
- のデータを読み込み、極域から赤道に至る

磁場変動と地磁気インデックスを見る準備ができる

- 0 X

🧶 IDL

Rules of the Road for MAGDAS/CPMN Data Use:

Scientists who want to engage in collaboration with SERC should contact the project leader of MAGDAS/CPMN observations, Prof. Dr. K. Yumoto, Kyushu Univ., who will organize such collaborations.

There is a possibility that the PI of MAGDAS will arrange offers so that there is less overlapping of themes between MAGDAS research groups

Before you use MAGDAS/CPMN data for your papers, you must agree to the following points;

- Before you submit your paper, you must contact the PI (Prof. K. Yumoto: yumoto@serc.kyushu-u.ac.jp) and discuss authorship.
- 2. When you submit your paper after doing the above item 1, you must mention the source of the data in the acknowledgment section of your paper.
- 3. In general, you must use the following references:
- Yumoto, K., and the 210MM Magnetic Observation Group, The STEP 210 magnetic meridian network project, J. Geomag. Geoelectr., 48, 1297-1310., 1996.
- Yumoto, K. and the CPMN Group, Characteristics of Pi 2 magnetic pulsations observed at the CPMN stations: A review of the STEP results, Earth Planets Space, 53, 981-992, 2001.
- Yumoto K. and the MAGDAS Group, MAGDAS project and its application for space weather, Solar Influence on the Heliosphere and Earth's Environment: Recent Progress and Prospects, Edited by N. Gopalswamy and A. Bhattacharyya, ISBN-81-87099-40-2, pp. 309-405, 2006.
- Yumoto K. and the MAGDAS Group, Space weather activities at SERC for IHY: MAGDAS, Bull. Astr. Soc. India, 35, pp. 511-522, 2007.
- In all circumstances, if anything is published you must send a hardcopy to the following address:

Prof. Dr. Kiyohumi Yumoto PI of MAGDAS/CPMN Project Director of Space Environment Research Center, Kyushu University 53 データを読み込んだ 際、各機関のrules of the roadがIDLウィ ンドウに表示される。 内容を必ず確認して おくこと!

←データ利用者として 必ず守るべきルール や謝辞の方法などが 記載されています!

THEMIS > tplot_names

今回の例では。。。

THEMIS> tplot_names
% Compiled module: TPLOT_NAMES.
1 nipr_mag_syo_1sec
2 mm210_mag_ktb_1min_hdz
3 mm210_mag_ktb_1h_hdz
4 magdas_mag_asb
5 kyoto_dst

各tplot変数の詳細を知るには

THEMIS **tplot_names, tplot变数名or 番号,/verbose**

THEMIS **tplot_names**, **'magdas_mag_asb'**, **/verbose**

そのままプロットする

THEMIS>tplot,['tplot変数名',またはtplot変数番号 ...]

window, 0, xsize=600, ysize=700 tplot,['nipr_mag_syo_1sec','mm210_mag_ktb_1min_hdz','magda s_mag_asb','kyoto_dst']

;芦別地磁気を各成分に分解 ;H成分から平均値を差し引く split_vec,'magdas_mag_asb' tsub_average, 'magdas_mag_asb_0' ;コトタバン地磁気を各成分に分解 split_vec,'mm210_mag_ktb_1min_hdz' ;昭和地磁気を各成分に分解 ;H成分を1分平均値化 split_vec,'nipr_mag_syo_1sec' avg_data,'nipr_mag_syo_1sec_x',60

;各観測点のH成分とDst指数をプロット tplot,['nipr_mag_syo_1sec_x_avg','magdas_mag_as b_0-d','mm210_mag_ktb_1min_hdz_x','kyoto_dst'] 時間軸を変更 tlimit, '2012-01-22/00:00','2012-01-24/00:00' 簡単な処理で、 見たい部分だけを はっきりと表示できる

;正規表現によるtplot。 ;芦別地磁気各成分(絶対値)プロット tplot,'magdas_mag_asb_?'

> 変数の指定に 正規表現が可能

;芦別地磁気各成分(平均値を引いたもの) ;を作成

tsub_average, 'magdas_mag_asb_1' tsub_average, 'magdas_mag_asb_2' tsub_average, 'magdas_mag_asb_3' ;y軸の幅を-50~50に変更後プロット ylim, 'magdas_mag_asb_?-d', -50, 50 tplot,'magdas_mag_asb_?-d'

;時間微分は deriv_data deriv_data, 'magdas_mag_asb_1' deriv_data, 'magdas_mag_asb_2' deriv_data, 'magdas_mag_asb_3' tplot, 'magdas_mag_asb_?_ddt'

かるので、必要なデータを切り出す newname = 'nipr mag syo 1sec x' + ' clip' t1=time double('2012-01-22/00:00') t2=time double('2012-01-22/12:00') trange_clip, 'nipr_mag_syo_1sec_x', t1, t2, newname=newname :昭和地磁気H成分をウェーブレット解析 wav_data,'nipr_mag_syo_1sec_x_clip',/k ol ,maxpoints=241*3600*2 ;カラープロットの幅指定 zlim,'*pow', .0001,.1,1 :昭和地磁気H成分と :ウェーブレット結果の表示 tplot, ['nipr_mag_syo_1sec_x_clip', 'nipr_mag_syo_1sec_x_clip_wv_pow', 'kyoto dst'] ;時間軸を拡大 tlimit, '2012-01-22/00:00','2012-01-22/12:00' データ解析講習会@STEL

;大量データのウェーブレットは時間がか

生プロットだけではなく データ解析後の表示もできる ウェーブレット解析をしてみる

;昭和地磁気H成分にPi2帯(40s-150s)で バンドパスフィルタ ;tplot変数から値を取り出す get_data, 'nipr_mag_syo_1sec_x_clip', data=x ;thm lsp filterを逐次実行 flow = 1d/150fhigh =1d/40dt=1 db=120.0 nyquist = 0.5d/dt fhigh = double(fhigh/nyquist) < 1.d</pre> flow = double(flow/nyquist) > 0.d fmin = min([flow, fhigh]) npts = long(!pi/fmin) > 1 npts = npts < n elements(x.y);デジタルフィルタの定義 cofs = digital_filter(flow,fhigh,db,npts, /double)

TDASのプロシージャにない処理でも tplot変数から値を取り出して計算できる。 ここではサンプルとしてバンドパスフィルタ を手動でかけてみる

;畳み込みとtplot変数再格納 x.y = convol(x.y,cofs,/edge_t,/nan) store_data, 'nipr_mag_syo_1sec_x_clip_filt', data=x

;SYOのH成分とバンドパスとウェーブレット表示 ylim, 'nipr_mag_syo_1sec_x_clip_filt', -10, 10 tplot,['nipr_mag_syo_1sec_x_clip','nipr_mag_sy o_1sec_x_clip_filt', 'nipr_mag_syo_1sec_x_clip_ wv_pow']

データ解析講習会@STEL

;フーリエ変換によるパワースペクトル表示 newname2 = 'nipr_mag_syo_1sec_x_clip' + '_psd' tdpwrspc, 'nipr_mag_syo_1sec_x_clip', newname=newname2, nboxpoint=512 tplot,['nipr_mag_syo_1sec_x_clip','nipr_mag_syo_1sec_x_clip_filt', 'nipr_mag_syo_1sec_x_clip_wv_pow','nipr_mag_syo_1sec_x_clip_psd']

