

平成27年度IUGONET研究集会 第2回「太陽地球環境データ解析に基づく超高層大気の空間・時間変動の解明」 2015年8月17-19日 @ 国立極地研究所

地上・衛星統合解析に基づく 磁気擾乱時の中層大気上部の応答の検証

#西山尚典¹、中村卓司¹、佐藤薫²、堤雅基¹、江尻省¹、冨川喜弘¹、田中良昌¹、津田卓雄³ [1] 国立極地研究所; [2] 東京大学 理学系研究科 地球惑星科学専攻; [3] 電気通信大学 情報理工学研究科;

Chemical effect on EPPs (1)

120 110

100

90 80

70

60

50 40

120

110

100

90

80

70

60

50

40

26 27 28 29 30 31

Altitude [km]

26 27 28 29 30 31

Altitude [km]

Electron density [log10(m⁻³)]

NO, density [log10(m-3)]

2

5 6

5

10.5

10

9.5

9

8.5

14.8

14.6

14.4

14.2

14

13.8

13.6

13.4

13.2

6 7

- ✓ Energetic Particle Precipitations (EPPs)の中間圏への化学応答
 - ・ モデル計算:[*Turunen et al.*, 2009; *Randall et al*., 2015]

[Randall et al., 2015]

Summer of the second se

Transfeld []

Chemical effect on EPPs (2)

- ✓ Energetic Particle Precipitations (EPPs) の中間圏への化学応答
 - 地上観測[:][*Daae et al.*, 2012]

最新の南極大型大気レーダーを活用し、 <mark>太陽と中層大気</mark>との 領域間結合の観点から研究する

- Mean occurrence rate is only 2.9 % (Total 447.5 h) [Zeller et al. 2006]
 - Free electron, as scatterer, is not produced enough around dark mesopause in polar winter.
 - Good correlation to enhancement of electron density in D region due to Solar Proton Event (SPE) [*Kirkwood et al.*, 2002]

Coincidence: SPE and PMWE

- ✓ First report on PMWE associated with Solar Proton Event
 - Quasi simultaneous detection of SPE, PMWE, and CNA (GOES, MST radar @Esrange, Riometer @Abisko)

Kirkwood et al., [2002]

hand

PMWE detected by PANSY

Correlations to SPEs

✓ Seasonal variations of daily occurrence rate for PMWE

- ✓ Two SPEs occurred in May 2013. (6 SPEs March through October 2013)
 - Good correlation to the most of SPEs or EEPs

Two SPEs in May 2015

✓ Summary plot for GOES and geomagnetic activity

SPE: PMWE and CNA

Sheard II.

Transfel [1]

SPE: POES/MEPED and MF radar houselle

Summary

- ✓ まとめにかえて
 - 高エネルギー粒子降下による中層大気上部の応答を検証
 - SPEDASを用いた地上観測や衛星観測の統合データ解析
 - 大型大気レーダーで観測されるPMWE(中間圏エコー)を中層大気
 上部の電離のプロキシとして注目
 - 2013年5月23日のSPEに対応するイベントを紹介
 - POES/MEPEDで高エネルギープロトンのフラックスの上昇が観測
 - 同時に非常に強いPMWE @ 60-70kmとCNA(~ 0.8 dB)を検出
 - 降下プロトンによる中層大気上部の異常電離に起因
 - St. Patrick Day'sや2015年6月22日の磁気嵐に対応するPMWEのエンハンスも確認
 - 高エネルギー電子(>100keV)による電離の重要性

Future Work

✓ 「より多くのデータを統合させた解析」に発展

- PMWE(中間圏の電離領域)の空間分布や時間発展: SuperDARN
- 鉛直方向の輸送過程: ライダーやレーダー, 衛星リモートセンシング

