

Development of a phase velocity spectral analysis software package (M-transform) for airglow imaging data and its application on atmospheric gravity waves studies

Septi Perwitasari^{1, 4}, Takuji Nakamura^{1, 2}, Masaru Kogure^{2, 1}, Yoshihiro Tomikawa^{1, 2}, Mitsumu K. Ejiri^{1, 2}, Kazuo Shiokawa³

 ¹National Institute of Polar Research, Tokyo, 190-8518, Japan
 ²Department of Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Tokyo, 190-8518, Japan
 ³National Institute of Aeronautics and Space (LAPAN) of Indonesia, Bandung, 40173, Indonesia
 ⁴Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601, Japan

Matsuda Transform (M-Transform)

Matsuda et al., 2014

$F_{1}(x, y, t)$

 $F_4 (\mathbf{v}_{xr} \, \mathbf{v}_{y})$

Transform airglow intensity data to power spectrum in horizontal phase velocity domain.

How does it work?

M-Transform Software

Table 1. Description of M-transform function on IDL.

Program description			
Name	Matsuda_transform		
Purpose	Calculate horizontal phase velocity spectra from airglow intensity image data using 3-D FFT		
Calling sequence	Result=Matsuda_transform(Img)		
Inputs	Img: time series of 2-D airglow data in geographic coordinates (x, y, t)		
Input keywords	 (a) dx, dy, dt: image resolution in x (m), y (m), and time (s) (b) LH_min, LH_max: minimum and maximum horizontal wavelength (m) to be processed (c) T_min, T_max: minimum and maximum wave period (s) to be processed (d) Vp_min, Vp_max: minimum and maximum horizontal phase speed (m s⁻¹) to be calculated (e) <i>zpx</i>, <i>zpy</i>, <i>zpt</i>: dimension of the zero-padded image size in x, y, and t to improve the intervals of k, l, and ω (f) min1, max1: minimum and maximum phase velocity spectra to be plotted (g) Interpolation: select interpolation method 		
Outputs	2-D phase velocity spectra (v_x, v_y)		
Remarks	Requires equal sampling interval time resolution (dt)		

How to use?

Airglow intensity data at Syowa station 11/09/20 23:00-06:00

```
Input=airglow image (400 x 400 km,
number of image= 21)
Keywords:
dt=180 (image resolution=3 minutes)
LH= default (5-100 km)
T= default (8-60 min)
Vp= default (0-150 m/s)
```


Performance Analysis

We examine the performance of this function by running several simulations:

- Changing the wave packet size (X) and wave duration (T) using test data:
- 1. Case 1: *c* constant (40 m/s), *τ* and *LH* vary (*τ*=8, 15, 30 min).
- 2. Case 2: *c* constant, *X* varies (FWHM=50, 100, 200 km).
- 3. Case 3: *c* constant (40 m/s), *T* varies (30, 60, 120 min).
- □ Aliasing effect analysis.
- Zero padding size analysis
- Noise sensitivity analysis

Simulation Set Up

 $y = A(sin(wavenumx * Xs + wavenumy * Ys) - \omega * Ts)$

wavenumber $x = \frac{2\pi}{LH}\cos(\frac{2\pi}{\theta})$ wavenumber $y = \frac{2\pi}{LH}\sin(\frac{2\pi}{\theta})$

X=100 km

- X, Y, T = Size of wave packet size in horizontal, meridional and temporal direction
- Xs, Ys, Ts = Size of airglow image in x (km, y (km) and time (second)
- Zpx, Zpy, Zpt = Zero padding size

 $\omega = 2\pi/T$

Case 1: Different wave period and horizontal wavelength

 $\omega = 2\pi/T$

 $y = A(sin(wavenumx * Xs + wavenumy * Ys) - \omega * Ts)$ $wavenumber x = \frac{2\pi}{LH} \cos(\frac{2\pi}{\theta})$ $wavenumber y = \frac{2\pi}{LH} \sin(\frac{2\pi}{\theta})$

c= 40 m/s LH= 30 km τ = 8, 15, 30 min Ts=120 min Xs=400 km dT=1 min Ts_min= 3dT θ = 225 deg (0=eastward)

- The longer the period, the wider the spectrum.
- i.e. The smaller number of cycle causes the wider spectrum.
- The total power difference is ~30%.

Case 2: Different Wave Packet Size (X)

- c= 40 m/s LH= 30 km τ= 12.5 min X=25, 50, 100, 200 km Ts=120 min Xs=400 km dT=1 min Ts_min= 3dT θ = 225 deg (0=eastward)
- The bigger the wave packet size (X), the sharper the spectrum
- Total power increases ~4x when X increases 2x.

Case 3: Different Wave Packet Duration (T)

- c= 40 m/s LH= 30 km τ= 12.5 min X= 100 km T=30, 60, 120 min Xs=400 km dT=1 min Ts_min= 3dT θ = 225 deg (0=eastward)
- The longer the duration of wave packet, the spectrum becomes sharper.
- Total power increases by ~2x when T increases by 2x.

Aliasing Effect/Mirror artifact

- c= 40 m/s LH= 30 km τ= 12.5 min dt=1, 3, 5, 7 min T=120 min Xs=400 km dT=1 min Ts_min= 2dT θ = 225 deg (0=eastward)
 - When the target frequency is lower than but close to the Nyquist frequency, the aliasing effect still appeared.
 - It is recommended to use at least Ts_min=3dT

Zero Padding Size Effect

a)Zpx= 512, 1024 and 2048 b)Zpt= 128, 256 and 512

- MacBook Pro: dual core 2.8 GHz Intel Core i7 processor with 4 MB cache size and 16 GB memory, while the program was singlethreaded.
- No significant differences in profile.

✓ Calculation time ~ proportional with the number of zero padding Zpx= 0.5 x default → 0.5 x decrease Zpx= 2 x default → ~4-5 x increase Zpt= 0.5 x default → 0.5 x decrease Zpx= 2 x default → ~2 x increase

• It should be noted that bigger zero padding give finer frequency resolution.

Noise Sensitifity Analysis

- c= 40 m/s LH= 30 km τ= 12.5 min dt=1, 3, 5, 7 min T=120 min Xs=400 km dT=1 min Ts_min= 2dT θ = 225 deg (0=eastward)
- PSD enhancement caused by the white noise can be seen around 0-10 m/s in the phase spectra density and radial profile
- it is recommended to exclude the spectrum between 0-20 m/s when the data is contaminated by noise.

Application: Comparison of gravity wave propagation directions at three different latitudes

Station name (country)	Syowa (Antarctic)	Shigaraki (Japan)	Tomohon (Indonesia)
Location	69° S, 40° E	35° N, 136° E	1° N, 122° E
Institution	National Institute of Polar Research (NIPR)	Nagoya University	National Institute of Aero- nautics and Space (LAPAN)
Airglow emission	Na (589.6 nm)	OI (557.7 nm)	OI (557.7 nm)
Sampling interval (dt) (min)	1	5.5	2.5
Image size (km)	400×400	400×400	400×400
Minimum wave period (T_min) (min)	16.5	16.5	16.5
Maximum wave period (T_max) (min)	60	60	60

Syowa station: 9 clear-nights (April-May 2013) Shigaraki : 10 clear-nights (April-May 2011) Tomohon : 5 clear-nights (April-May 2016)

(Perwitasari et al., 2018)

Day-to-day variation of 2D phase velocity spectra

Syowa:

The day-to-day variation of the phase velocity spectrum at the Syowa Station is smaller and the propagation direction is mainly westward.

Shigaraki:

□ The day-to-day variation of the horizontal propagation direction is **larger** than that at the Syowa Station.

Tomohon:

□ The day to day variation of the nightly power spectrum magnitude is remarkable, which indicates **the intermittency of atmospheric gravity waves** (AGWs).

Average day-to-day variation of the 2D phase velocity spectrum

Syowa:

□Shows that the dominant propagation is **westward** with a phase **speed** <50 m/s.

Shigaraki:

□Shows east/southeastward dominant propagation with a phase speed of up to ~ 80 m/s.

The day-to-day variation in Tomohon is too strong to discuss average characteristics; however, a phase speed of up to ~ 100 m/s and faster is observed.

Summary and Future Works

- We developed a user-friendly IDL function based on Matsuda et al.'s (2014) 3D FFT method for airglow data analysis.
- This function can calculate big amount of data with reasonable execution time.
- Several simulations have been done to examine the performance analysis of this new function.
- This new function was applied to airglow imaging obtained from April-May of selected years at three different latitudes: Syowa Station (69°S, 40°E), Shigaraki (35°N, 136°E), and Tomohon (1°N, 122°E), run by different groups.
- We demonstrated the distinct difference of the GW propagation characteristics at three different latitudes based on the phase velocity spectra.
- > If you are interested in using our program, please do not hesitate to contact us.