

- SPEDAS (CUI) を使ってみよう

Published by IUGONET Project Team, Aug. 2019. http://www.iugonet.org/

- IUGONET Type-AとSPEDASの2つを組み合わせることで、超高層大気分野の一連の研究の流れをサポートします。
- IUGONET Type-Alcは、各観測データのQuick-Look画像や、SPEDASによる解析方法が掲載されており、SPEDASによる高度な解析にスムーズに接続します。

統合型解析ソフトウェア SPEDAS CUI

SPEDAS CUI を使ってみよう

IUGONET

(目次) SPEDAS CUI 操作方法

- 1. インストール
- 2. 基本コマンド

2.1	時間幅設定、データのロード、プロットの作成 毎回使うコマンドとして、必ず覚えておきましょう。	timespan, tplot_names, tplot
2.2	ベクトルの成分分解 成分ごとに詳細な解析(相関解析や演算等)をしたい場合に使います。	split_vec
2.3	時間幅の変更 時間軸を拡大して、時間変動を詳しく見たい場合に使います。	tlimit
2.4	縦軸範囲の変更 縦軸を拡大して、変動量を詳しく見たい場合に使います。	ylim, zlim
2.5	プロットタイトルの付与、余白とフォントの調整 プロット全体をきれいに仕上げる場合に使います。	tplot_options
2.6	軸タイトル・ラベルの変更、線の色の変更 データごとに凡例や色を変更する場合に使います。	options
2.7	タイムスタンプの表示と非表示 発表や論文等では不要なタイムスタンプ情報を削除します。	time_stamp
2.8	プロット画像の保存 プロット結果を画像ファイルに保存する場合に使います。	makepng, makejpg, makegif, popen/pclose
2.9	tplot変数のASCII出力、保存、再読込み tplotの中身を数値で確認したい場合、後でまたそのtplot変数を使いたい場合に用います。	tplot_ascii, tplot_save, tplot_restore

(目次) SPEDAS CUI 操作方法

CUI

3. 応用コマンド(解析のための準備)

3.1	tplot変数のコピー tplot変数の現在の状態を残して、解析を次に進める(試す)場合に使います。	copy_data
3.2	tplot変数値のIDL変数への格納 SPEDASで計算した値を、IDLの変数値と比較・演算する場合に使います。	get_data
3.3	IDL変数値のtplot変数への格納 IDLで計算した値を、SPEDASのtplot変数と比較・演算する場合に使います。	store_data
3.4	日時文字列の構造体への格納 Unix timeや日時文字列を構造体化して、IDLやSPEDASの構造体との演算を容易にします。	time_struct
3.5	スパイクノイズの除去 ノイズを除去して本来の値のみ使いたい場合に用います。	clean_spikes
3.6	dt間の値の補間 dt間を高時間分解能データから補って、時間変動を詳しく見たい場合に使います。	tinterpol
3.7	指定した範囲値の抽出(Y,Z) 指定した範囲内の値のみ使いたい場合に用います。	tclip
3.8	欠損値の補間 欠損値(NaN)を有限な値に置き換えて繋げる場合に使います。	tdeflag
3.9	時刻抜け箇所へのNaN挿入 ^{連続であるはずの時刻が飛んでいる場合に、連続化させるために使います。}	tdegap
3.10	時間範囲を指定して抽出 特定の時間範囲のみを取り出して、詳細に解析したい場合に使います。	time_clip
3.11	指定した時刻の値(配列番号)を抽出 指定した時刻の値(配列番号)を取り出して、詳細に解析したい場合に使います。	nn
		Ő

IUGONET

(目次) SPEDAS CUI 操作方法

4.1	平均値の差し引き _{変動の相対量を見たい場合に使います。}	tsub_average
4.2	移動平均とスムージング 長期変動解析など、指定周期よりも遅い変動のみを解析対象にする場合に使います。	tsmooth_in_time
4.3	ハイパスフィルタ─ 短期変動解析など、指定周期よりも早い変動のみを解析対象にする場合に使います。	thigh_pass_filter
4.4	フーリエスペクトル解析 変動の周波数を算出する場合に使います。	tdpwrspc
4.5	ウェーブレット変換 変動の周波数を算出する場合に使います。	wav_data
4.6	四則演算、微分、平均計算 tplot変数の値を使って単純演算したい場合に使います。	add_data, dif_data, mult_data, div_data, deriv_data, avg_data
4.7	計算式の構築とその演算 自分で計算式を構築して演算する場合に使います。	calc

CUI

(目次) SPEDAS CUI 操作方法

5. その他の便利なコマンド

- 5.1 指定した時刻に縦線を引く ^{プロットにおいて、現象の開始点・終了点をハイライトする場合に使います。}
 timebar
- 5.2 指定したY軸の値に横線を引く 現象の振幅等をハイライトする場合に使います。

tplot_apply_databar

CUI

Appendix. その他の便利な使い方

- A.1 crib_sheet を使った連続処理 バッチ処理のように、一連のコマンドを続けて実行したい場合に使います。
- A.2 UDAS egg を使ったロードプロシージャの自作 自分のデータを解析したい場合、自分なりの解析ルーチンを構築したい場合に使います。

2.1.時間幅の設定、データの読込み、描画

前ページの基本コマンドは、以下のようにも実行できます。

timespan

timespan, '2012-03-05/00:00', 7, <mark>/day</mark>	キーワードで指定した値が日数であることを明示します。 他に、時間(/hour)、分(/min)、秒(/sec)を指定することができます。 省略した場合は日(/day)が適用されます。
timespan, ['2018-04-01', '2018-04-14'] timespan, ['2018-04-01/00:00:00', '2018-04-01/12:00:00']	開始日時と終了日時を、具体的に与えることができます。

tplot_names

tplot_names, ' <mark>tplot変数名</mark> '	指定したtplot変数がロードされているかを確認することができます。
tplot_names, 'tplot変数名', <mark>/verbose</mark>	指定したtplot変数の詳細情報を見ることができます。

- データ自体の注意事項、データを使う際に必要なPIへのコンタクト、論文に書くべき謝辞内容などは、/verbose オプションによる表示でも確認することが できます。データロード時に表示される内容のほか、/verbose を使って、その内容を確認しておくようにしましょう。

tplot

tplot, [1, 2]	tplot変数名の代わりに、tplot変数に振られる通し番号を指定することもできます。通し番号は、 tplot_namesを実行すると見ることができます。
tplot	キーワードの省略により、直前に描画したデータをもう一度描画することができます。

(その他の基本コマンド)

del_data, 'tplot変数'	指定したtplot変数を削除します。すべて削除する場合は、'*'を与えます。
exit	SPEDASとIDLを終了します。

CUI

tplot変数とは?

tplot変数とは、時刻情報、緯度・経度情報、値、データに関する情報(メタ情報)等を格納するための、SPEDAS 構造体です。

SPEDASでは、tplot変数に格納さえすれば、簡単に描画することができます。いかに適した解析を行い、それをいかにtplot変数に格納していくかが、SPEDASを使いこなすうえでのポイントとなります。

2.2. ベクトルの成分分解

⁻ split_vecでは、分解後の値を格納するtplot変数は自動で作成されます。

join_vecでは、まとめたいデータ間で時間が同じ場合にのみ、使うことができます。

tlimit	ウィンドウを2点クリックすることで、切出しの開始と終了の日時を与えます。
tlimit, /last	1つ前の時間幅に戻します。
tlimit, <mark>/full</mark>	timespanで指定した時間幅に戻します。

options, 'tplot変数名', 'オプション名', 値

options, 'tplot変数', 'labels', ラベル文字列 options, 'tplot変数', 'ytitle', '文字列' options, 'tplot変数', 'colors', 色コード

プロットのラインのラベルを変更します。 Y軸のタイトルを変更します。 プロットのラインの色を変更します。 (0:黒、1:マゼンダ、2: 青、3:シアン、4: 緑、5: 黄、6: 赤)

データごとに凡例や色を変更する場合に使います。

(例)

THEMIS> options, 'mm210 mag kag 1sec hdz', 'labels', ['H', 'D', 'Z'] THEMIS> tplot

0000 Mar 08

2000

SYM-H

2.7. タイムスタンプの表示/非表示

time_stamp, (/on または /off)

発表や論文等では不要なタイムスタンプ情報を削除します。

2.8. プロット画像の保存

makepng, '保存名'

プロット結果を画像ファイルに保存する場合に使います。

2.9. tplot変数のASCII出力、保存、再読込み

tplot_ascii, 'tplot変数名'(, fname='保存するファイル名')

tplot_save, 'tplot変数名', filename='保存するファイル名' tplot_restore, filename='再読込みするファイル名'

tplotの中身を数値で確認したい場合、後でまたそのtplot変数を使いたい場合に用います。

(例)

THEMIS> tplot_ascii, 'mm210_mag_kag_1h_hdz', fname='myfile'

2012-03-05/03:00:00.000	-2.9200001e+001	-3.3000000e+000	-3.5000000e+001
2012-03-05/04:00:00.000	-2.7100000e+001	-2.5700001e+001	-4.3000000e+001

tplot変数の値が、ASCII形式のファイル myfile.txt として保存されました。

THEMIS> tplot_save, 'mm210_mag_kag_1h_hdz', filename='myfile'

THEMIS> tplot_names

tplot変数が myfile.tplot ファイルとして保存されました。

THEMIS> tplot_restore, filename='myfile.tplot' THEMIS> tplot_names <u>、</u>・いずれも拡張子の入力は不要です。

ASCII出力は、他の解析ソフトウェアに引き継がせる等にも効果 的です。

tplot変数の保存と再読込みは、解析を一旦終了して後でその続きを実施する場合や、他の人に渡してその解析結果を議論したい場合等に有用です。

3.1. tplot変数値のコピー

copy_data, '元のtplot変数名', '新しいtplot変数名'

tplot変数の現在の状態を残して、解析を次に進める(試す)場合に使います。

(例)

```
THEMIS> tplot_names
1 wdc_mag_ae_prov_1min
2 wdc_mag_ae_prov_1min_0
3 wdc_mag_ae_prov_1min_1
4 wdc_mag_ae_prov_1min_2
```

THEMIS > copy_data, 'wdc_mag_ae_prov_1min_1', 'mydata'

THEMIS> tplot_names 1 wdc_mag_ae_prov_1min 2 wdc_mag_ae_prov_1min_0 3 wdc_mag_ae_prov_1min_1 4 wdc_mag_ae_prov_1min_2 5 mydata tplot変数がコピーされました。(中身はコピー元と同じです。)

3.3. IDL変数値のtplot変数への格納

store_data, '新tplot変数名', data = {x:time, y:data}

作成するtplot変数(構造体)の定義

IDLで計算した値を、SPEDASのtplot変数と比較・演算する場合に使います。

(例)

THEMIS> time = d.x (このd.xは、get dataで作成したIDL変数dのメンバx(時刻)を示します。)

THEMIS> val = sqrt($d.y[*, 0]^2 + d.y[*, 1]^2 + d.y[*, 2]^2$)

IDL変数の地磁気ベクトルd.yから地磁気絶対値 | B | = √(Bx²+By²+Bz²)を計算し、valに代入したとします。

timeとvalを(x, y)に持つ、新しいtplot変数 'kag_abs' を作成します。

THEMIS> tplot_names

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz', 'kag_abs']

- データ配列(data)には、スカラーデータの場合は[N](timeと 同じサイズ)、1次元ベクトルデータの場合は[N][J](Jがベク トルの成分数)の配列であれば、tplot変数に格納することが できます。

tplot変数もIDL構造体です。(x, y)のみでなく、時間、値、緯 度、経度などの多くの情報を入れることができます。例えば、 store_data, 'abs_tec', data = {x:time, y:tec, glat:glat, glon:glon} など、その拡張性により、多量変数のデータを他 の演算へ引き継ぐことができます。

IUGO	NET

3.4. 日時文字列の構造体への格納

'新しい変数名' = time_struct('YYYY-MM-DD[/hh:mm:ss]')

指定した値を 格納するための構造体名 日時文字列 (Unix time でも指定できます)

IDLで計算した値を、SPEDASのtplot変数と比較・演算する場合に使います。

(例)

THEMIS> tstr='2010-01-02/10:20:30'

THEMIS> ts=time_struct(tstr)

THEMIS> help, ts, /str

** Structure TIME_STRUCTR, 14 tags, length=48, data length=42:

YEAR	INT	2010
MONTH	INT	1
DATE	INT	2
HOUR	INT	10
MIN	INT	20
SEC	INT	30
FSEC	DOUBLE	0.0000000
DAYNUM	LONG	733773
DOY	INT	2
DOW	INT	5
SOD	DOUBLE	37230.000
DST	INT	0
TZONE	INT	0
TDIFF	INT	0

- 構造体からは、例えば、ts.year, ts.month のようにして値を 取り出すことができます。 IUGONET

3.5. スパイクノイズの除去

CUI

3.6. dt間の値の補間

tinterpol, <u>'tplot変数名'</u>, 'tplot変数名' (, newname='新tplot変数') $\frac{1}{4\pi}$ 現在の粗いデータ 細かいデータ

dt間を高時間分解能データから補って、時間変動を詳しく見たい場合に使います。

(例)

THEMIS> tinterpol, 'mm210_mag_kag_1min_hdz_x', 'mm210_mag_kag_1sec_hdz_x' THEMIS> tplot, ['mm210_mag_kag_1min_hdz_x', 'mm210_mag_kag_1min_hdz_x_interp']

-1分値データを細かくしたい場合等に使います。 補間に使う2つのデータは、同じ時間である必要があ ります。 同じ観測でも、例えば、1分値と1秒値のデータが用 意されている場合があります。詳細に見たい場合は、 最初から1秒値データを使うなどの工夫も大切です。 (オリジナルは1秒値データで、サマリーを見るためや データ容量を削減する目的で1分値データが作成さ れているという場合があります。)

3.7. 指定した範囲値の抽出(Y,Z)

tclip, 'tplot変数名', 最小值, 最大值(, newname='新tplot変数')

抽出する範囲抽出する範囲の最小値の最大値

指定した範囲内の値のみ使いたい場合に用います。

(例)

THEMIS> tclip, 'mm210_mag_kag_1sec_hdz_x', -80, -30

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', 'mm210_mag_kag_1sec_hdz_x_clip']

IUGONET	3.8. 欠損値の補間 CUI			CUI
tdeflag,	<u>'tplot変数名'</u> , ^{補間したい} ^{元データ}	' <u>method'</u> (, _{補間種別}	newname='新tplot	変数名')
	補間の種別	linear repeat remove_nan	線形補間 直前の正常値で補間 NaNを取り除く	
	欠損値(NaN)を	を有限の値に置き換え	て繋げる場合に使います。	
(例) THEMIS> tdeflag	'mm210 mag kag 1	sec hdz v clin'	'linear'	

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x_clip', 'mm210_mag_kag_1sec_hdz_x_clip_deflag']

 フィルター処理やスペクトル解析、相関演算を行う前に 適用します。
 あまりにも欠測値があるデータの場合は、解析結果の信 頼度を下げることになるため、あまりお勧めしません。
 tclipと組み合わせて使うことで、エラー値の箇所を補間 することができます。

3.9. 時刻抜け箇所へのNaN挿入

CUI

tdegap, 'tplot変数名'(, maxgap=<u>範囲</u>, newname='新tplot変数名')

適用時間幅 maxgap×dt秒以下の時刻抜け をNaNで埋める

連続であるはずの時刻が飛んでいる場合に、時刻を連続化させるために使います。

3.10. 時間範囲を指定して抽出

CUI

time_clip, 'tplot変数名', 'YYYY-MM-DD/hh:mm:ss', 'YYYY-MM-DD/hh:mm:ss'

抽出開始日時

抽出終了日時

(, newname='新tplot変数名')

特定の時間範囲のみを取り出して、詳細に解析したい場合に使います。

(例)

THEMIS> timespan, '2012-03-08'

THEMIS> iug_load_gmag_mm210, site='kag'

THEMIS> time_clip, 'mm210_mag_kag_1sec_hdz', '2012-03-08/08', '2012-03-08/16'

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', 'mm210_mag_kag_1sec_hdz_x_tclip']

32

4.1. 平均値の差し引き

tsub_average, 'tplot変数名', (/median, new_name='新tplot変数名')

中間値を取り除く場合

変動の相対量を見たい場合に使います。

(例)

THEMIS> tsub_average, 'mm210_mag_kag_1sec_hdz_x'

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', 'mm210_mag_kag_1sec_hdz_x-d']

4.2. 移動平均とスムージング

tsmooth_in_time, 'tplot変数', <u>dt</u>(, newname='新tplot変数名') _{平均幅(秒)}

長期変動解析など、指定周期よりも遅い変動のみを解析対象にする場合に使います。

(例)

THEMIS> tsmooth_in_time, 'mm210_mag_kag_1sec_hdz_x', 600

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', mm210_mag_kag_1sec_hdz_x_smoothed']

- 指定された時間幅(秒数)で移動平均してスムージ ングします。

長期変動など、指定周期よりも早い変動を取り除い て遅い周期を解析対象にしたい場合に使います。

4.3. ハイパスフィルター

thigh_pass_filter, 'tplot変数', <u>dt</u>(, newname='新tplot変数名') ^{下限周期(秒)}

短期変動解析など、指定周期よりも早い変動のみを解析対象にする場合に使います。

(例)

THEMIS> thigh_pass_filter, 'mm210_mag_kag_1sec_hdz_x', 200

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', 'mm210_mag_kag_1sec_hdz_x_hpfilt']

IUGONET

4.4. フーリエスペクトル解析

CUI

tdpwrspc, 'tplot変数', nboxpoints=值(, nshiftpoints=值)

FFTをかける データ点数 ーーーー 時間方向にシフトする データ点数

変動の周波数を算出する場合に使います。

(例)

THEMIS> tdpwrspc, 'mm210_mag_kag_1sec_hdz', nboxpoints=512, nshiftpoints=256 THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', 'mm210_mag_kag_1sec_hdz_x_dpwrspc']

4.5. ウェーブレット変換

wav_data, 'tplot変数'(, trange=時間範囲)

変換する時間範囲

変動の周波数を算出する場合に使います。

(例)

THEMIS> tr=['2012-03-08/08', '2012-03-08/16']

時間範囲は、あらかじめ変数として与えておくと便利です。

THEMIS> wav_data, 'mm210_mag_kag_1sec_hdz_x', trange=tr

THEMIS> tplot, ['mm210_mag_kag_1sec_hdz_x', 'mm210_mag_kag_1sec_hdz_x_wv_pow']

4.6. 四則演算、微分、平均計算

add_data, <u>'tplot変数名', 'tplot変数名'</u>(, newname='新tplot変数名') ^{演算する2つのtplot変数}

その他、dif_data(差)、mult_data(積)、div_data(商)、deriv_data(微分)

avg_data, 'tplot变数名', 秒平均值(, newname='新tplot变数名')

平均を取る秒 特定の時間範囲のみを取り出して、詳細に解析したい場合に使います。

(例) THEMIS> tplot names rov. AE [__min) 1 wdc mag ae prov 1 min 2 wdc mag ae prov 1 min 0 (AE) 3 wdc mag ae prov 1 min 1 AU 4 wdc mag ae prov 1 min 2 AL 5 wdc mag ae prov 1 min 3 AO ¥°⊑ Pi⊑ THEMIS> dif data, 3, 4, newname='AU-AL' THEMIS> add data, 3, 4, newname='AU+AL' THEMIS> tplot, ['wdc_mag_ae_prov_1min_0', 'AU-AL', 'wdc mag ae prov 1min 3', 'AU+AL'] Date 05 2012 Mar 'AU-AL'と'AU+AL'が作成され、プロットされました。 ※物理的にも AE=AU-AL, AO=(AU+AL)/2 です。 微弱な変化を見たいときは時間微分(deriv data)が非常 に効果的です。スペクトル解析などに持ち込めます。

CUI

4.7. 計算式の構築とその演算

5.1. 指定した時刻に縦線を引く

timebar, 'YYYY-MM-DD[/hh:mm:ss]'

線を引く時刻

(, color=色コード, linestyle=線の種類, thick=線の太さ)

色コード
0:黒(既定値)、1:マゼンダ、2:青、3:シアン、4:緑、5:黄、6:赤
線の種類
0:実線(既定値)、1:点線、2:破線、3:一点鎖線、4:二点鎖線、5:長い破線
線の太さ
数値で与える

プロットにおいて、現象の開始点・終了点をハイライトする場合に使います。

options, 'tplot変数名', 'databar', {yval:Y値}

固定文字列 固定文字列 線を引く 'databar'を 'yval'を Y値 与える 与える

tplot_apply_databar, 'tplot变数名'

現象の振幅等をハイライトする場合に使います。

(例)

THEMIS> timespan, '2012-3-8' THEMIS> iug_load_gmag_mm210, site='kag' THEMIS> tplot, 'mm210_mag_kag_1sec_hdz' THEMIS> options, 'mm210_mag_kag_1sec_hdz', 'databar', {yval:[0, 20, 40]} THEMIS> tplot apply databar

指定したY値(0,20,40)に横線が引かれて、現象の振幅が 分かりやすくなりました。

A.1. crib sheet を使った連続処理

.run crib_sheet名

バッチ処理のように、一連のコマンドを続けて実行したい場合に使います。

(例)iug_crib_asi_nipr.pro(SPEDASに同梱されています)

thm_init

```
timespan, '2012-01-22/20:30', /min, 30
```

```
iug load asi nipr,site='hus', wavelength='0000'
```

tplot_names

tplot, 'nipr asi hus 0000'

print, 'Enter ".c" to continue.' stop

window, 1, xsize=480, ysize=480 ctime, /cut

end

- crib sheet は、実行例を示すものとして、SPEDAS パッケージの中にいくつか入っています。使い方が 分からない場合に参考にするのもよいでしょう。 また、自分で作っても構いません。自分に合った一 連の解析を保存しておくのもよいでしょう。

43

A.2. UDAS egg を使ったロードプロシージャの自作

UDAS egg

自分のデータを解析したい場合、自分なりの解析ルーチンを構築したい場合に使います。

UDAS egg

UDAS egg は、SPEDAS未対応の科学データを簡単にロード・解析するための、IDL/SPEDAS用のプログラム雛形です。マニュアルに従い、プログラムコード上 にマークされた箇所(目10行程度)を書き換えるだけで、「自分のデータ」を即時に可視化・解析することができます。 Windows, Linux, Macintoshに対応しています。IDLとSPEDASがあれば利用可能です(UDASの個別アップデートは不要です)。 自分のデータをIDLで解析したい・、プログラムの書き方がよく分からない・・、プログラム作成よりももっと研究に時間を費やしたい・・ そんなあなたの「困った」を即時解決します。

マニュアル (PDF, 152KB)

最新版

1.02 for CDF/ASCII (zip, 1MB)

以前のバージョン

1.01 for CDF/ASCII (zip, 1MB) 1.00 for CDF/ASCII (zip, 1MB)

SPEDAS/UDASの使い方

1. Instructions for data analysis software (PDF, 7.1MB, 英語): 国外講習会でも利用しているIUGONETの共通テキストです。

2. 講習会テキスト(講習会ページ):各講習会で使用したテキストに沿ってSPEDASを学ぶことができます。

ユーザが持っているSPEDAS未対応の科学データを 簡単にロード・解析するための、IDL/SPEDAS用プロ グラムの雛形です。

プログラムコード上にマークされた箇所(計10行程 度)を書き換えるだけで、「自分のデータ」を即時に可 視化・解析することができます。マニュアルも IUGONETのウェブサイトからダウンロードできます。

CUI